Fractional diffusion equation with distributed-order material derivative. Stochastic foundations
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملA numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملTime-fractional Diffusion of Distributed Order
The partial differential equation of Gaussian diffusion is generalized by using the time-fractional derivative of distributed order between 0 and 1, in both the Riemann-Liouville (R-L) and the Caputo (C) sense. For a general distribution of time orders we provide the fundamental solution, that is still a probability density, in terms of an integral of Laplace type. The kernel depends on the typ...
متن کاملLinear Space-time Fractional Reaction-diffusion Equation with Composite Fractional Derivative in Time
In this paper, we consider linear space-time fractional reactiondiffusion equation with composite fractional derivative as time derivative and Riesz-Feller fractional derivative with skewness zero as space derivative. We apply Laplace and Fourier transforms to obtain its solution.
متن کاملFractional Ince equation with a Riemann-Liouville fractional derivative
We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order a > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves að Þ in function of the parameter , the stability domains, and the periodic stable solutions of the fractional Ince equation. Two important observations are the detachment of the eigenvalue cur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2017
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/aa651e